Self-organizing maps of symbol strings

نویسندگان

  • Teuvo Kohonen
  • Panu Somervuo
چکیده

Unsupervised self-organizing maps (SOMs), as well as supervised learning by Learning Vector Quantization (LVQ) can be defined for string variables, too. Their computing becomes possible when the SOM and the LVQ algorithms are expressed as batch versions, and when the average over a list of symbol strings is defined to be the string that has the smallest sum of generalized distance functions from all the other strings. ( 1998 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

String averages and self-organizing maps for strings

In a recent paper, T. Kohonen and P. Somervuo have shown that self-organizing maps (SOMs) are not restricted to numerical data. They can also be defined for symbol strings, provided that one defines an average function for strings and that the adaptation process is performed off-line (batch). In this paper, we present two different methods for computing averages of strings, as well as an on-lin...

متن کامل

Processing Symbolic Data With Self-Organizing Maps

Current research on machine learning and related algorithms is focused mainly on numeric paradigms. It is, however, widely supposed that intelligent behavior strongly relies on ability to manipulate symbols. In this paper we present on-line versions of self-organizing maps for symbol strings. The underlying key concepts are average and similarity, applied on strings. These concepts are easily d...

متن کامل

Self-Organizing Maps of Symbol Strings with Application to Speech Recognition

SOM and LVQ algorithms for symbol strings have been introduced and applied to isolatedword recognition, for the construction of an optimal pronunciation dictionary for a given speech recognizer.

متن کامل

How to make large self-organizing maps for nonvectorial data

The self-organizing map (SOM) represents an open set of input samples by a topologically organized, finite set of models. In this paper, a new version of the SOM is used for the clustering, organization, and visualization of a large database of symbol sequences (viz. protein sequences). This method combines two principles: the batch computing version of the SOM, and computation of the generaliz...

متن کامل

Online algorithm for the self-organizing map of symbol strings

In this work an online algorithm is presented for the construction of the self-organizing map (SOM) of symbol strings. Each node of the SOM grid is associated with a model string which is a variable-vector sequence. Smooth interpolation method is applied in the training which performs simultaneous adaptation of the symbol content and the length of the model string. The efficiency of the method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1998